信息化知识
盖勒普:智能工厂与大数据的关系
来源:
摘要
中国的制造业在30多年来取得了举世瞩目的成就,连续几年成为“世界制造力竞争指数”最强的国家,中国已然成为世界制造业的新中心。2015年中,国务院印发《中国制造2025》,部署全面推进实施制造强国战略。配套“互联网+”和“供给侧改革”等多项措施,“智能制造”被定位为中国制造的主攻方向。
大数据是智能制造核心驱动力
如何实现智能制造? 从哈佛商学院到宾夕法尼亚大学沃顿商学院,有一个普遍的共识,即数字化转型是智能制造实现的途径。更为重要的是,这一共识同样来自众多的世界级制造业企业家们。
这一共识是基于无数技术趋势的融合。例如物联网、信息物理系统技术(CPS)、工业物联网、移动技术、人工智能、云计算、虚拟/增强现实(VR/AR)、大数据分析等。数字化转型不仅仅意味着企业简单的数字化,而是把数字作为智能制造的核心驱动力,需要利用数据去整合产业链和价值链。
数据基本分为两类,一类是人类轨迹产生的数据,另一类是机器自动产生的数据。这两类数据构成了我们今天的大数据多结构化数据源。自工业4.0以来,为了改进运营,制造商一直以来都在有意采集并存储数据。随着时间的推移,数据在制造业分析的需求将越来越大。然而在过去的250年间,利用数据的根本动因并没有改变,但数据的复杂性增强,将数据转化为情报的能力将有越来越大的需求。
对于数字化转型的其他方面而言,2012年高德纳给出的大数据定义里面,特别强调大数据是多样化信息资产,大数据不仅要关注实际数据量的多少,而且最重要的是关注大数据的处理方法,让数据产生巨大的创新价值。数据量大还是量小本身并不是判断大数据价值的核心指标,而数据的实时性和多元性应该对大数据的定义和价值更具直接的影响。
如果不投资大数据及大数据分析,从中获得信息,智能制造所追求的卓越运营将功亏一篑。如果通过利用大数据、预测性分析及云技术衡量产品性能只为了解客户需求,这意味着你正在失去数字化转型最大的价值。在工业大数据的领域里,我们除了要继续关心“人为数据或与人相关的数据”,更多的要关注“机器数据或工业数据”与人的行为数据的融合。
大数据以及工业大数据的特性
数据本身不会为你带来价值,数据的技术也不会让我们的制造业更先进,数据必须转成信息后才会对产业产生价值。智能工厂通过与环境系统的无缝交互,设备能够有自我意识和自学能力,在未来可以实现更高程度的智能控制和优化控制。目前自学设备还远未达到工业实施阶段。
制造业企业有着大量的数据,从内部而言,积累了大量的内源数据,包括运维、管理、流程、质量等。而在互联网时代,外源数据更多,包括供应商、竞争对手、客户反馈等等。事实上,制造业企业不缺数据,问题在于数据质量低下,采集手段不科学。造成的现象是数据丰富但信息贫乏。目前表现出两大问题:第一是数据的有效利用率很低;第二是缺乏分析能力,需要大量的工具。
由此可见,推动智能制造的并不是大数据本身,而是大数据的分析技术。工业大数据给了我们一个看世界的新角度。通过360度全景的数字视角,可能给我们带来新的优势,这就是它成为创新驱动核心动力的来源。
在智能制造的工业大数据中,数据类型多样性是大数据的重要属性。大量的数据不是大数据,单一的数据类型也不足以构成大数据。人们一直设法收集并弄清楚不断变化的数据类型。在制造业中,大数据分析需要利用通用的数据模型,将库存记录、交易记录和财务交易记录等结构性商业系统数据与预警、流程参数和质量事件、社交媒体或其他协作平台获得的文本信息、图像数据、地理或地质信息等非结构性操作系统数据以及供应商、公共网络数据结合起来,进而通过先进的分析工具发现新的洞见。
大数据与智能制造的关系
制造企业在力求降低生产过程中的浪费,提高制造工业环保与安全水平,根据生产状况实现系统自我调整、实现自适应,以及全面服务个性化需求的过程中,都会实时产生大量数据。
利用大数据工具,通过数据分析和挖掘,我们可以了解问题产生的过程、造成的影响和解决的方式,找到创造附加价值的新形式。利用大数据的工具和思维,帮助制造业实现商业模式的转变,改造和提升客户体验,完善内部操作流程,或许是最佳途径之一。
来源:盖勒普